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Abstract We propose some formulations of the notion of “operational independence” of
two subsystems S1, S2 of a larger quantum system S and clarify their relation to other inde-
pendence concepts in the literature. In addition, we indicate why the operational indepen-
dence of quantum subsystems holds quite generally, both in nonrelativistic and relativistic
quantum theory.

Keywords Quantum theory · Operations · Independence

1 Introduction

The aim of this note is to propose mathematically well defined formulations of the notion of
“operational independence” of two subsystems S1, S2 of a larger quantum system S and to
clarify their relation to other independence concepts in the mathematical physics literature.
In addition, we shall indicate why the operational independence of quantum subsystems
holds quite generally, both in nonrelativistic and relativistic quantum theory.

Intuitively, operational independence of subsystems S1 and S2 expresses the notion that
any two physical operations (measurements, state preparations etc.) which can be carried
out on S1 and S2 separately can also be carried out jointly as a single operation on system S.

It will be seen that operational independence can be given different technical formula-
tions within the context of operator algebraic models of quantum systems. If the observables
of quantum systems S1, S2 and S are represented by selfadjoint elements of C∗-subalgebras
A1, A2 of a C∗-algebra A, then S1 and S2 are called operationally C∗-independent in A if
any two completely positive, unit preserving maps T1 and T2 on A1 and A2, respectively,
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have a joint extension to a completely positive, unit preserving map T on A (Definition 6).
Completely positive maps T satisfying T (I) ≤ I are called operations in the physics lit-
erature, since they can be used to represent physical operations carried out on the quantum
systems [9, 20]. If the observables of the quantum systems in question are represented by von
Neumann algebras, then it is natural to require the operations T1, T2 and T to be normal (con-
tinuous in the σ -weak topology)—the resulting definition is operational W ∗-independence
(Definition 7). Requiring that the extension T factors across the subalgebras (and preserves
faithfulness) leads to Definitions 8 and 9.

In this paper we shall explain the relations of these notions to the already established
notions of subsystem independence in the literature and, in so doing, provide some useful
alternative characterizations of operational independence. In addition, we shall be able to
demonstrate that the strongest form of operational independence formulated here obtains
quite generally in nonrelativistic quantum mechanics and in relativistic quantum field theory.

We outline the structure of the paper. Section 2 recalls some notions of independence
which have been investigated in the literature and which are relevant from the perspective
of operational independence. Section 3 recalls the concept of operation as a completely pos-
itive map on C∗-, resp. W ∗-, algebras together with some basic properties of completely
positive maps. Section 4 formulates the definitions of operational independence in terms of
completely positive maps and establishes their logical relations with the notions described
in Sect. 2. Finally, in Sect. 5 the relation to a further, previously studied independence prop-
erty called the split property is explained, and this relation is used to show that operational
independence holds widely in quantum theory.

2 Some Notions of Independence

Throughout the paper A denotes a unital C∗-algebra, A1, A2 are assumed to be C∗-
subalgebras of A (with common unit I ). A1 ∨ A2 will denote the smallest C∗-subalgebra
of A containing both A1 and A2. N denotes a von Neumann algebra, and N1, N2 will be
von Neumann subalgebras of N (with common unit). N1 ∨ N2 will denote the smallest von
Neumann algebra in N containing both N1 and N2. If N is a von Neumann algebra acting
on the Hilbert space H, then N ′ represents its commutant, the set of all bounded operators
on H which commute with all elements of N . S(A) is the state space of the C∗-algebra A.
(For the operator algebraic notions see [30–32], [18, 19] or [3].) For a Hilbert space H, the
set of all bounded operators on H is denoted by B(H).

Since there are different quantitative and qualitative aspects to the notion of independent
subsystems, it is natural that there be many theory dependent formulations of such inde-
pendence. We discuss only a few of these here. The following technical definitions of inde-
pendence were formalized in the context of algebraic quantum theory in a comprehensive
review up to 1990 of the hierarchy of independence concepts and their non-trivial logical
interrelations [27]. See [27] for a discussion of their operational meaning and their history.
For more recent developments, see [13, 17, 21].

Definition 1 A pair (A1, A2) of C∗-subalgebras of a C∗-algebra A is called C∗-independent
if for any state φ1 on A1 and for any state φ2 on A2 there exists a state φ on A such that both

φ(X) = φ1(X) for any X ∈ A1,

φ(Y ) = φ2(Y ) for any Y ∈ A2

obtain.
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Definition 2 A pair (A1, A2) of C∗-subalgebras of a C∗-algebra A is called C∗-independent
in the product sense if the map η(XY)

.= X ⊗ Y extends to an C∗-isomorphism of A1 ∨ A2

with A1 ⊗ A2, where A1 ⊗ A2 denotes the tensor product of A1 and A2 with the minimal
C∗-norm (see [12, 18, 19, 30–32]).

If A is faithfully represented on a Hilbert space H, then the minimal norm referred to
here is the ordinary operator norm in B(H) ⊗ B(H) � B(H ⊗ H).

Definition 3 A pair (N1, N2) of von Neumann subalgebras of the von Neumann algebra N
is called W ∗-independent if for any normal state1 φ1 on N1 and for any normal state φ2 on
N2 there exists a normal state φ on N such that both

φ(X) = φ1(X) for any X ∈ N1,

φ(Y ) = φ2(Y ) for any Y ∈ N2

obtain.

Definition 4 A pair (N1, N2) of von Neumann subalgebras of the von Neumann algebra N
is called W ∗-independent in the product sense if for any normal state φ1 on N1 and for any
normal state φ2 on N2 there exists a normal product state φ on M extending φ1 and φ2, i.e.
a normal state φ on N such that

φ(XY) = φ1(X)φ2(Y ) for any X ∈ N1, Y ∈ N2.

The above independence notions are not independent logically. Here we collect some
results on their interrelations. Note that only C∗-independence in the product sense requires
that the algebras mutually commute. The apparent asymmetry between the definitions of
C∗-, resp. W ∗-, independence in the product sense will be resolved below (for mutually
commuting von Neumann algebras acting on a separable Hilbert space).

Proposition 1

1. If A1, A2 are commuting, then the C∗-independence in the product sense of (A1, A2)

implies the C∗-independence of (A1, A2), but the converse is false [27].
2. W ∗-independence of a pair of arbitrary von Neumann algebras implies C∗-independence

of the pair [13, 27], but the converse is false. In fact, examples of pairs of von Neumann
algebras which do not mutually commute have been found which are C∗-independent
but not W ∗-independent. But if N1, N2 are commuting von Neumann algebras acting
on a separable Hilbert space, then the C∗-independence of (N1, N2) implies the W ∗-
independence of the pair [13], so that for such pairs C∗-independence is equivalent to
W ∗-independence.

3. The W ∗-independence in the product sense of (N1, N2) implies the W ∗-independence of
(N1, N2), but the converse is false [27].

4. If N1, N2 are commuting, then the W ∗-independence in the product sense of (N1, N2)

implies the C∗-independence in the product sense of (N1, N2), but the converse is false
[13, 27]. (This is further discussed below.)

1These are the states which can be represented by a density matrix. Hence, in general, physicists tacitly
restrict their attention to normal states.
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Note that if A1, A2 are commuting C∗-algebras, then the extension state φ in Definition 1
may be chosen to be a product state [23], i.e.

φ(XY) = φ(X)φ(Y ) = φ1(X)φ2(Y ),

for all X ∈ A1, Y ∈ A2. The corresponding assertion for W ∗-independence is false [27].
Indeed, in that context one has the following theorem.

Proposition 2 ([29]) Let N1, N2 be commuting factor von Neumann algebras acting on a
common Hilbert space. Then the map η(XY)

.= X ⊗ Y extends to a W ∗-isomorphism of
N1 ∨ N2 with the W ∗-tensor product N1 ⊗ N2 if and only if there exists a normal product
state on N1 ∨ N2.

In fact, the assumption that the algebras be factors may be dropped if the normal product
state is required to have central support I , the identity map on the Hilbert space [10]. Hence,
one has the following result.

Proposition 3 Let N1, N2 be commuting von Neumann algebras acting on a separable
Hilbert space. Then (N1, N2) is W ∗-independent in the product sense if and only if there
exists a faithful normal product state on N1 ∨ N2.

Proof Let (N1, N2) be W ∗-independent in the product sense. Since the Hilbert space on
which the algebras act is separable, there exist faithful normal states φ1, φ2 on N1, N2,
respectively [30–32, Proposition II.3.19]. But then φ1 ⊗ φ2 is a faithful normal state on
N1 ⊗ N2 [30–32, Corollary IV.5.12]. If η : N1 ∨ N2 → N1 ⊗ N2 is the hypothesized W ∗-
isomorphism, then (φ1 ⊗ φ2) ◦ η is a faithful normal product state on N1 ∨ N2. For the
converse, see [10, 29]. �

An analogous characterization of C∗-independence in the product sense was proven in
[13].

Proposition 4 ([13]) Let A1, A2 be commuting subalgebras of a C∗-algebra A acting on a
separable Hilbert space. Then (A1, A2) is C∗-independent in the product sense if and only
if there exists a faithful product state on A1 ∨ A2.

These results resolve the asymmetry between the definitions of C∗-, resp. W ∗-, inde-
pendence in the product sense, at least in the indicated important special case. It therefore
follows that for a pair of commuting von Neumann algebras acting on a separable Hilbert
space, W ∗-independence in the product sense implies C∗-independence in the product sense.
However, the converse is false—see below.

3 Positive and Completely Positive Maps

Recall that a linear map T : A → B can be extended to a linear map Tn:Mn(A) → Mn(B)

(here Mn(A) is the set of n by n matrices with entries which are elements from the C∗-
algebra A) by

Tn

(
a11 . . . a1n

. . .

an1 . . . ann

)
=

(
T (a11) . . . T (a1n)

. . .

T (an1) . . . T (ann)

)
.
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Definition 5 T is completely positive if Tn is positive for every n ∈ N. A completely positive
map T : A → A satisfying T (I) ≤ I is called an operation [9, 20]. An operation T such that
T (I) = I is said to be nonselective. An operation T on a von Neumann algebra N is called
normal if it is σ–weakly continuous. A positive linear map T : A → B is faithful if T (X) > 0
whenever A � X > 0.

The dual T ∗ of a nonselective operation defined by

T ∗: S(A) → S(A), T ∗φ .= φ ◦ T

maps the state space S(A) of A into itself. If T is a normal nonselective operation on the
von Neumann algebra N , then T ∗ takes normal states to normal states.

Operations are the mathematical representatives of physical operations, i.e. physical
processes which take place as a result of physical interactions with the quantum system.
(For a detailed interpretation of operations see [20].) A state on A is a completely positive
unit preserving map from A to C [2]. So, if φ is a state on A, then

A � X �→ T (X) = φ(X)I ∈ A (1)

is a nonselective operation in the sense of the above definition, which is canonically asso-
ciated with the state and which may be interpreted as the preparation of the system into
the state φ. Further examples of operations are provided by measurements. In particular, if
one measures a quantum system with observable algebra B(H) for the value of a (possibly
unbounded) observable Q with purely discrete spectrum {λi} and corresponding spectral
projections Pi , then according to the “projection postulate” this measurement can be repre-
sented by the operation T defined as

B(H) � X �→ T (X) =
∑

i

PiXPi ∈ B(H). (2)

T is a normal nonselective operation.
A classic result characterizing certain completely positive maps was established in [24].

Proposition 5 (Stinespring’s Representation Theorem) T : A → B(H) is a completely pos-
itive linear map from a C∗-algebra A into B(H) if and only if it has the form

T (X) = V ∗π(X)V, X ∈ A,

where π : A → B(K) is a representation of A on the Hilbert space K and V : H → K is a
bounded linear map. If A is a von Neumann algebra and T is normal, then π can be chosen
to be a normal representation.

So, in particular, C∗-homomorphisms are completely positive. A corollary of Stine-
spring’s theorem was proven by Kraus [20].

Proposition 6 (Kraus’ Representation Theorem) T : B(H) → B(H) is a normal operation
if and only if there exist bounded operators Wi on H such that

T (X) =
∑

i

W ∗
i XWi,

∑
i

W ∗
i Wi ≤ I.
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Compare with (2).
It is important in Stinespring’s theorem that T takes its value in the set of all bounded

operators B(H) on a Hilbert space. This is related to the fact that operations defined on
a subalgebra of an arbitrary C∗-algebra are not, in general, extendible to an operation on
the larger algebra [2]. Indeed, a C∗-algebra B is said to be injective if for any C∗-algebras
A1 ⊂ A every completely positive unit preserving linear map T1 : A1 → B has an extension
to a completely positive unit preserving linear map T : A → B. It was shown in [2] that
B(H) is injective.

4 Operational Independence

In the light of these considerations, the following generalizations of C∗-and W ∗-independ-
ence are natural.

Definition 6 A pair (A1, A2) of C∗-subalgebras of C∗-algebra A is operationally C∗-
independent in A if any two nonselective operations on A1 and A2, respectively, have a
joint extension to a nonselective operation on A; i.e. if for any two completely positive unit
preserving maps

T1: A1 → A1, T2: A2 → A2,

there exists a completely positive unit preserving map

T : A → A

such that

T (X) = T1(X) for all X ∈ A1,

T (Y ) = T2(Y ) for all Y ∈ A2.

Definition 7 A pair (N1, N2) of von Neumann subalgebras of a von Neumann algebra N is
operationally W ∗-independent in N if any two normal nonselective operations on N1 and
N2, respectively, have a joint extension to a normal nonselective operation on N .

Since operations defined on a subalgebra need not be extendible to a larger algebra in
general, it is important in Definitions 6 and 7 that operational independence of subalgebras
is defined with respect to some fixed larger algebra. Note, however, that, here and below, this
joint extension then has further extensions to arbitrary superalgebras, as long as the range
of the first extension is interpreted as mapping into an injective algebra, which remains the
fixed range of the further extensions.

Operational C∗-independence expresses the notion that any operation (measurement,
state preparation etc.) on system S1 is co-possible with any such operation on system S2

(if these systems are represented by C∗-algebras—similarly for W ∗-algebras). Given a non-
selective operation T , its dual T ∗ takes states into states; hence, the content of operational
C∗-and W ∗-independence also can be formulated in terms of changes of states of the systems
involved: Operational C∗-independence of (A1, A2) entails the feature that any transition of
state φ1 of S1 into state ψ1 is compatible with any transition φ2 of S2 into state ψ2. That is to
say, these two transitions can take place as a transition of a single state φ of S into state ψ .
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Operational W ∗-independence has a similar interpretation in terms of transitions between
normal states on the respective von Neumann algebras.

In analogy with C∗-and W ∗-independence in the product sense, the following strength-
ened versions of operational C∗-and W ∗-independence seem natural.

Definition 8 A pair (A1, A2) of C∗-subalgebras of a C∗-algebra A is operationally C∗-
independent in A in the product sense if any two (faithful) nonselective operations on A1 and
A2, respectively, have a joint extension to a (faithful) nonselective operation on A which is
a product across A1 and A2; i.e. if for any two (faithful) completely positive unit preserving
maps

T1: A1 → A1, T2: A2 → A2,

there exists a (faithful) completely positive unit preserving map

T : A → A

such that

T (X) = T1(X) for all X ∈ A1, (3)

T (Y ) = T2(Y ) for all Y ∈ A2, (4)

T (XY) = T (X)T (Y ), X ∈ A1, Y ∈ A2 (5)

Definition 9 A pair (N1, N2) of von Neumann subalgebras of a von Neumann algebra N
is operationally W ∗-independent in N in the product sense if any two (faithful) normal
nonselective operations on N1 and N2, respectively, have a joint extension to a (faithful)
normal nonselective operation T on N which is a product across N1 and N2 in the sense
of (5).

We first remark that in Definition 9 the prima facie additional requirement that faithful
operations are extended by faithful operations is superfluous in the case of states. In other
words, W ∗-independence in the product sense entails that faithful states can be extended by
faithful product states (cf. the proof of Proposition 3). This is not true in the case of states in
Definition 8 [16]. The status of this additional requirement is under investigation in the case
of general operations [16]. The assumption is added here for reasons which will become
apparent below.

States provide special cases of operations, yet C∗-and W ∗-independence are not, strictly
speaking, special cases of operational C∗-and W ∗-independence. Indeed, C∗-and W ∗-
independence require a narrower class of operations on S1 and S2 to have a joint extension,
but the joint extension must belong, in turn, to that narrower class of operations (the states).
On the other hand, operational C∗-and W ∗-independence require a larger class of partial op-
erations to have a joint extension, but the extension can be in that larger class of operations.
Thus C∗-and W ∗-independence on one hand, and operational C∗-and W ∗-independence on
the other, are prima facie not related in a straightforward manner. Let us examine this rela-
tionship more closely. Assume that (A1, A2) is operationally C∗-independent in A. Let φ1

and φ2 be two states on A1 and A2, respectively. As mentioned earlier, the two maps

T1(X) = φ1(X)I, X ∈ A1, (6)

T2(Y ) = φ2(Y )I, Y ∈ A2, (7)
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are completely positive unit preserving maps on A1 and A2, respectively, so by assumption,
T1 and T2 have a joint extension T to A. This T need not be associated with a state; however,
for any state φ on A, the state T ∗φ on A is clearly an extension of both φ1 and φ2. It is clear
that similar reasoning remains valid if the states φ1, φ2 and φ are assumed to be normal
states on operationally W ∗-independent von Neumann subalgebras N1 and N2 of N . What
is more, if operational independence in the product sense obtains, then one has

T ∗φ(XY) = φ(T (XY)) = φ(T (X)T (Y )) = φ(T1(X)T2(Y )) = φ1(X)φ2(Y ), (8)

for all X ∈ A1, Y ∈ A2, and for any state φ ∈ S(A). We observe that operational indepen-
dence in the product sense thereby entails the existence of operations which prepare the
quantum system presented in any initial (normal) state into a product state yielding any two
prescribed (normal) partial states. This is a remarkable property; therefore it is noteworthy
that operational independence in the product sense can be verified in rather general circum-
stances (see the next section). In light of these remarks, we have a series of propositions; the
proofs of the first two are now immediate.

Proposition 7 Operational C∗-independence of (A1, A2) in A entails the C∗-independence
of the pair (A1, A2).

Proposition 8 Operational W ∗-independence of N1 and N2 in N entails the W ∗-
independence of the pair (N1, N2).

Note that in Propositions 7 and 8 the algebras (A1, A2) and (N1, N2) are not assumed to
be commuting.

Before proceeding to the next results, we need the following proposition. A proof of most,
but not all, of the assertions in this proposition using the Stinespring representation theorem
can be found in [12]. We present an alternative argument here which also establishes the
remaining points.

Proposition 9 Let A1, A2, B1, B2 be unital C∗-algebras and let T : A1 → B1 and S : A2 →
B2 be (faithful) completely positive maps. Then T ⊗ S : A1 ⊗ A2 → B1 ⊗ B2 is a (faithful)
completely positive map. If A1, A2, B1, B2 are von Neumann algebras and T and S are
normal, then T ⊗ S : A1 ⊗, A2 → B1 ⊗ B2 is normal.

Proof That T ⊗ S is completely positive, resp. normal, under the stated conditions is a
consequence of [30–32, Propositions IV.4.23, IV.5.13]. So let S and T be faithful and 0 �=
A ∈ A1 ⊗ A2. Let ÎA1 , resp. ÎA2 etc., denote the identity map on A1, resp. A2 etc. These
maps are completely positive.

First, consider the case A2 = B2. By [30–32, Theorem IV.4.9] there exist φ1 ∈ S(A1),
φ2 ∈ S(A2), such that (φ1 ⊗ φ2)(AA∗) �= 0. Let T1, T2 be the completely positive maps
defined in (6), (7). Since ÎA1 ⊗T2 is completely positive and AA∗ is positive, one must have
(ÎA1 ⊗ T2)(AA∗) ≥ 0. And since

(φ1 ⊗ φ2)(ÎA1 ⊗ T2)(AA∗) = (φ1 ⊗ φ2)(AA∗) �= 0,

one must also have (ÎA1 ⊗ T2)(AA∗) �= 0. One therefore concludes (ÎA1 ⊗ T2)(AA∗) > 0.
Note that (ÎA1 ⊗ T2)(AA∗) can be naturally identified with a strictly positive element of A1
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as follows. Given the state φ2 on A2, one has the left slice map L : A1 ⊗ A2 → A1 which
satisfies

L

(∑
i

Xi ⊗ Yi

)
=

∑
i

φ2(Yi)Xi.

This map is completely positive [3, II.9.7.1], and one has (ÎA1 ⊗T2)(AA∗) = L(AA∗)⊗IA2 ,
where IA2 is the unit in A2. Therefore, L(AA∗) > 0. But then

(ÎB1 ⊗ T2) ◦ (T ⊗ ÎA2)(AA∗) = (T ◦ L(AA∗)) ⊗ IA2 > 0,

since T is faithful. This entails that (T ⊗ ÎA2)(AA∗) �= 0 and thus T ⊗ ÎB2 is faithful (recall
IA2 = IB2 here). A similar argument implies that ÎA1 ⊗ S is faithful in the case A1 = B1.

In the general case, one notes that T ⊗ S = (T ⊗ ÎB2) ◦ (ÎA1 ⊗ S), and the proposition
follows. �

An immediate consequence of this observation is given next.

Proposition 10 Let A1, A2 be mutually commuting C∗-algebras acting on a separable
Hilbert space. The pair (A1, A2) is C∗-independent in the product sense if and only if it
is operationally C∗-independent in A1 ∨ A2 in the product sense.

Proof Let (A1, A2) be C∗-independent in the product sense, so there exists a C∗-
isomorphism η : A1 ∨ A2 → A1 ⊗ A2 such that η(XY) = X⊗Y , for all X ∈ A1 and Y ∈ A2.
If Ti is a (faithful) completely positive unit preserving map on Ai , i = 1,2, then T1 ⊗ T2

is a (faithful) completely positive unit preserving map on A1 ⊗ A2. Thus, (T1 ⊗ T2) ◦ η is
such a map on A1 ∨ A2 and satisfies all the conditions required to establish the operational
C∗-independence in A1 ∨ A2 in the product sense of (A1, A2).

Conversely, let (A1, A2) be operationally C∗-independent in A1 ∨ A2 in the product
sense. There exist faithful states φ1, φ2 on A1, A2, respectively (there exist such states on
A1

′′ and A2
′′ by [30–32, Proposition II.3.19]—-just restrict these to A1 and A2, respec-

tively), so that T1, T2 defined as in (6) and (7) are faithful operations on A1, A2, respectively.
By hypothesis, there exists a faithful joint product extension T on A1 ∨ A2. Choosing the
state φ in (8) to be faithful on A1 ∨ A2, one then has a faithful product state on A1 ∨ A2.
Proposition 4 completes the proof. �

Of course, a similar argument yields the analogous result in the W ∗-case.

Proposition 11 Let N1, N2 be mutually commuting von Neumann algebras acting on a
separable Hilbert space. The pair (N1, N2) is W ∗-independent in the product sense if and
only if it is operationally W ∗-independent in N1 ∨ N2 in the product sense.

In light of Propositions 1, 10 and 11, we can then conclude that operational W ∗-
independence in the product sense is strictly stronger than operational C∗-independence in
the product sense. In fact, choosing N1 to be the hyperfinite type III factor2 and N2 = N1

′,

2See [18, 19, 30–32] for a description of the Murray–von Neumann classification of von Neumann algebras
and subsequent refinements. See also [22] for a discussion of the necessity and physically relevant conse-
quences of the various types of von Neumann algebras in quantum theory.
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the pair (N1, N2) is C∗-independent in the product sense, but it is not W ∗-independent in the
product sense [13, 27]. (This situation actually arises in relativistic quantum field theory—
cf. e.g. [27].)

Proposition 12 Let N1, N2 be mutually commuting von Neumann algebras acting on a
separable Hilbert space. For the pair (N1, N2), operational W ∗-independence in N1 ∨ N2

in the product sense implies operational C∗-independence in N1 ∨ N2 in the product sense,
but the converse is false.

5 Operational Independence and the Split Property

In this section we discuss the relation of operational independence with a further well
studied independence property and use this relation to demonstrate that operational W ∗-
independence in the product sense holds quite generally in both nonrelativistic and rela-
tivistic quantum theory. The independence property in question is a strengthening of W ∗-
independence in the product sense.

Definition 10 A pair (N1, N2) of von Neumann subalgebras acting on a Hilbert space H is
called W ∗-independent in the spatial product sense if the map

XY → X ⊗ Y, X ∈ N1, Y ∈ N2

extends to a spatial isomorphism of N1 ∨ N2 with N1 ⊗ N2, i.e. there exists a unitary operator
U : H → H ⊗ H such that UXYU ∗ = X ⊗ Y for all X ∈ N1, Y ∈ N2.

In general, W ∗-independence in the spatial product sense is strictly stronger than W ∗-
independence in the product sense [10]. However, there are many commonly met situations
in which they are equivalent [10, Theorem 1, Corollary 1], in particular when either of the
von Neumann algebras is a factor or either is of type III. W ∗-independence in the spatial
product sense is, in turn, known to be equivalent to an important structure property of inclu-
sions of von Neumann algebras, which has been intensively studied for the purposes of both
abstract operator algebra theory and algebraic quantum field theory.

Proposition 13 ([4]) For a mutually commuting pair (N1, N2) of von Neumann algebras,
the following are equivalent.

1. There exists a type I factor M such that N1 ⊂ M ⊂ N2
′.

2. (N1, N2) is W ∗-independent in the spatial product sense.

Although according to the usage introduced in [11] we should say that the pair (N1, N2
′)

is split, it is for our purposes more convenient to say that a pair (N1, N2) of von Neumann
algebras is split if condition (1) in the previous proposition holds.

As a consequence of the results discussed above, it is now evident that operational W ∗-
independence in the product sense obtains in many physically relevant settings. In order not
to lengthen this note unduly, we shall make some brief comments and not formulate specific
theorems. However, some of the matters discussed in this section are treated in more details
in [28].



3260 Int J Theor Phys (2010) 49: 3250–3261

In nonrelativistic quantum mechanics, the algebras of observables are typically type I
factors; therefore in that setting mutually commuting algebras of observables are necessarily
split. Hence, such pairs of algebras are operationally W ∗-independent in the product sense.

In relativistic quantum theory [1, 15], where the algebra of observables A(O) carries the
interpretation of the algebra generated by all observables measurable in the spacetime region
O, the local algebras A(O) are typically type III von Neumann algebras [7, 14]. Hence, for
spacelike separated spacetime regions O1, O2 (for which A(O1) and A(O2) mutually com-
mute), the operational W ∗-independence in the product sense of (A(O1), A(O2)) is equiva-
lent to the pair being split. In [6, 33] it has been shown that, in the presence of the additional
structures present in algebraic quantum field theory, the split property is equivalent to the
local preparability of arbitrary normal states on the local algebras; this latter involves a spe-
cial case of the operation (6) (cf. also [27, Theorem 3.13] for a formulation which does not
require those additional structures). Hence, the equivalences we have established above are
not unexpected.

The split property has been verified for all strictly spacelike separated3 (precompact,
convex) regions O1, O2 in a number of physically relevant quantum field models, both in-
teracting and noninteracting [4, 25].4 Moreover, the split property for all strictly spacelike
separated (precompact, convex) regions O1, O2 has also been shown to be a consequence
of a condition (nuclearity) which expresses the requirement that the energy–level density
for any states essentially localized in a bounded spacetime region cannot grow too fast with
the energy and assures that the given model is thermodynamically well–behaved (e.g. ther-
mal equilibrium states exist for all temperatures [5, 8]). Hence, for such regions the pair
(A(O1), A(O2)) of observable algebras typically satisfies operational W ∗-independence in
the product sense. On the other hand, in general, pairs (A(O1), A(O2)) associated with re-
gions which are spacelike separated and tangent are not W ∗-independent in the product
sense [26, 27] (although they are W ∗-independent) and therefore not operationally W ∗-
independent in the product sense. Moreover, pairs (A(O1), A(O2)) associated with certain
unbounded spacelike separated regions (e.g. wedges) cannot be split [4] and thus are not
operationally W ∗-independent in the product sense.
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